Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.697
Filtrar
1.
BMC Cancer ; 24(1): 482, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627648

RESUMO

BACKGROUND: Therapies for metastatic castration-resistant prostate cancer (mCRPC) include targeting the androgen receptor (AR) with androgen receptor inhibitors (ARIs) and prostate-specific membrane antigen (PSMA). Having the ability to detect AR, AR splice variant 7 (AR-V7), or PSMA in circulating tumor cells (CTCs) or circulating exosomal cell-free RNA (cfRNA) could be helpful to guide selection of the appropriate therapy for each individual patient. The Vortex Biosciences VTX-1 system is a label-free CTC isolation system that enables the detection of the expression of multiple genes in both CTCs and exosomal cfRNA from the same blood sample in patients with mCRPC. Detection of both AR-V7 and PSMA gene expression in both CTCs and cfRNA simultaneously has not yet been reported. METHODS: To characterize the combined VTX-1-AdnaDetect workflow, 22Rv1 cancer cells were spiked into blood from healthy donors and processed with the VTX-1 to mimic patient samples and assess performances (capture efficiency, purity, AR and AR-V7 expression). Then, we collected 19 blood samples from 16 patients with mCRPC and therapeutic resistance to androgen receptor inhibitors (ARIs). Plasma was separated and the plasma-depleted blood was processed further with the VTX-1 to collect CTCs. Both plasma exosomal cfRNA and CTCs were subsequently analyzed for AR, AR-V7, PSMA, and prostate-specific antigen (PSA) mRNA expression using the AdnaTest ProstateCancerPanel AR-V7 assay. RESULTS: AR-V7 expression could be detected in 22Rv1 cells spiked into blood from healthy volunteers as well as in CTCs and plasma-derived exosomal cfRNA from patients with mCRPC by processing blood with the VTX-1 CTC isolation system followed by the AdnaTest ProstateCancerPanel AR-V7 assay. 94.7% of patient blood samples (18/19) had detectable AR expression in either CTCs or exosomal cfRNA (16 in CTCs, 12 in cfRNA). 15.8% of the 19 patient blood samples (3/19) were found to have AR-V7-positive (AR-V7+) CTCs, one of which was also AR-V7+ in the exosomal cfRNA analysis. 42.1% of patient blood samples (8/19) were found to be PSMA positive (PSMA+): 26.3% (5/19) were PSMA+ in the CTC analysis and 31.6% (6/19) were PSMA+ in the exosomal cfRNA analysis. Of those 8 PSMA+ samples, 2 had detectable PSMA only in CTCs, and 3 had detectable PSMA only in exosomal cfRNA. CONCLUSION: VTX-1 enables isolation of CTCs and plasma exosomes from a single blood draw and can be used for detecting AR-V7 and PSMA mRNA in both CTCs and cfRNA in patients with mCRPC and resistance to ARIs. This technology facilitates combining RNA measurements in CTCs and exosomal cfRNA for future studies to develop potentially clinically relevant cancer biomarker detection in blood.


Assuntos
Ácidos Nucleicos Livres , Exossomos , Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Ácidos Nucleicos Livres/uso terapêutico , Exossomos/genética , Exossomos/metabolismo , Próstata/patologia , Isoformas de Proteínas/genética , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/genética , Antagonistas de Receptores de Andrógenos/uso terapêutico , RNA Mensageiro/genética
3.
Sci Rep ; 14(1): 7827, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570556

RESUMO

Metastatic melanoma, a highly lethal form of skin cancer, presents significant clinical challenges due to limited therapeutic options and high metastatic capacity. Recent studies have demonstrated that cancer dissemination can occur earlier, before the diagnosis of the primary tumor. The progress in understanding the kinetics of cancer dissemination is limited by the lack of animal models that accurately mimic disease progression. We have established a xenograft model of human melanoma that spontaneously metastasizes to lymph nodes and lungs. This model allows precise monitoring of melanoma progression and is suitable for the quantitative and qualitative analysis of circulating tumor cells (CTCs). We have validated a flow cytometry-based protocol for CTCs enumeration and isolation. We could demonstrate that (i) CTCs were detectable in the bloodstream from the fourth week after tumor initiation, coinciding with the lymph node metastases appearance, (ii) excision of the primary tumor accelerated the formation of metastases in lymph nodes and lungs as early as one-week post-surgery, accompanied by the increased numbers of CTCs, and (iii) CTCs change their surface protein signature. In summary, we present a model of human melanoma that can be effectively utilized for future drug efficacy studies.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Neoplasias Cutâneas , Animais , Humanos , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Neoplasias Cutâneas/patologia , Metástase Linfática , Citometria de Fluxo
4.
PLoS One ; 19(3): e0297739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457477

RESUMO

In recent years, the importance of isolating single cells from blood circulation for several applications, such as non-invasive tumour diagnosis, the monitoring of minimal residual disease, and the analysis of circulating fetal cells for prenatal diagnosis, urged the need to set up innovative methods. For such applications, different methods were developed. All show some weaknesses, especially a limited sensitivity, and specificity. Here we present a new method for isolating a single or a limited number of cells adhered to SBS slides (Tethis S.p.a.) (a glass slide coated with Nanostructured Titanium Dioxide) by Laser Capture Microdissection (LCM) and subsequent Whole Genome Amplification. SBS slides have been shown to have an optimal performance in immobilizing circulating tumour cells (CTCs) from early breast cancer patients. In this work, we spiked cancer cells in blood samples to mimic CTCs. By defining laser parameters to cut intact samples, we were able to isolate genetically intact single cells. We demonstrate that SBS slides are optimally suited for isolating cells using LCM and that this method provides high-quality DNA, ideal for gene-specific assays such as PCR and Sanger sequencing for mutation analysis.


Assuntos
Células Neoplásicas Circulantes , Gravidez , Feminino , Humanos , Microdissecção e Captura a Laser/métodos , Células Neoplásicas Circulantes/patologia , DNA
5.
ACS Nano ; 18(12): 8683-8693, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465942

RESUMO

Distinctive subpopulations of circulating tumor cells (CTCs) with increased motility are considered to possess enhanced tumor-initiating potential and contribute to metastasis. Single-cell analysis of the migratory CTCs may increase our understanding of the metastatic process, yet most studies are limited by technical challenges associated with the isolation and characterization of these cells due to their extreme scarcity and heterogeneity. We report a microfluidic method based on CTCs' chemotactic motility, termed as CTC-Race assay, that can analyze migrating CTCs from metastatic non-small-cell lung cancer (NSCLC) patients with advanced tumor stages and enable concurrent biophysical and biochemical characterization of them with single-cell resolution. Analyses of motile CTCs in the CTC-Race assay, in synergy with other single cell characterization techniques, could provide insights into cancer metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Biomarcadores Tumorais
6.
Lab Chip ; 24(8): 2237-2252, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38456773

RESUMO

Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL)-based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events per min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Using transfer learning, we additionally validate DL-based BSFC on blood samples from different species and cancer cell types. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.


Assuntos
Aprendizado Profundo , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Citometria de Fluxo , Linhagem Celular Tumoral , Separação Celular/métodos
7.
Clin Exp Med ; 24(1): 59, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554188

RESUMO

Investigating the role of circulating tumor cells (CTCs) and their characteristics is still controversial in patients with gastric cancer (GC). Therefore, in this study, to provide a comprehensive review and meta-analyses of the literature on association of CTCs with gastric cancer, Scopus, Web of Science, Embase, and Medline were searched for systematic reviews and meta-analyses conducted during February 2022 using the keywords. Risk of bias, hazard ratios (HRs), and risk differences (RD) were assessed. Forty-five studies containing 3,342 GC patients from nine countries were assessed. The overall prevalence of CTC in GC was 69.37% (60.27, 77.78). The pooled result showed that increased mortality in GC patients was significantly associated with positive CTCs, poor overall survival (HR = 2.73, 95%CI 2.34-3.24, p < 0.001), and progression-free survival rate (HR = 2.78, 95%CI 2.01-3.85, p < 0.001). Subgroup analyses regarding markers, detection methods, treatment type, presence of distance metastasis, presence of lymph node metastasis, and overall risk of bias showed significant associations between the groups in terms of the incidence rates of CTCs, OS, and PFS. In addition, the results of risk differences based on sampling time showed that the use of the cell search method (RD: - 0.19, 95%CI (- 0.28, - 0.10), p < 0.001), epithelial marker (RD: - 0.12, 95%CI (- 0.25, 0.00), p 0.05) and mesenchymal markers (RD: - 0.35, 95%CI (- 0.57, - 0.13), p 0.002) before the treatment might have a higher diagnostic power to identify CTCs and also chemotherapy treatment (RD: - 0.17, 95%CI (- 0.31, - 0.03), p 0.016) could significantly reduce the number of CTCs after the treatment. We also found that the risk differences between the clinical early and advanced stages were not statistically significant (RD: - 0.10, 95%CI (- 0.23, 0.02), P 0.105). Also, in the Lauren classification, the incidence of CTC in the diffuse type (RD: - 0.19, 95%CI (- 0.37, - 0.01), P0.045) was higher than that in the intestinal type. Meta-regression analysis showed that baseline characteristics were not associated with the detection of CTCs in GC patients. According to our systematic review and meta-analysis, CTCs identification may be suggested as a diagnostic technique for gastric cancer screening, and the outcomes of CTC detection may also be utilized in the future to create personalized medicine programs.


Assuntos
Células Neoplásicas Circulantes , Neoplasias Gástricas , Humanos , Células Neoplásicas Circulantes/patologia , Prognóstico , Neoplasias Gástricas/patologia , Modelos de Riscos Proporcionais , Metástase Linfática , Biomarcadores Tumorais
8.
Methods Mol Biol ; 2777: 205-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478346

RESUMO

Measuring circulating tumor cells (CTCs) or circulating cancer stem cells (CCSCs) in blood, which shed from primary tumors, is a noninvasive method to screen and/or diagnose patients with a high risk of developing metastatic cancers or relapse. Here, we describe an optimized and standardized laboratory method for isolating CCSCs from human blood samples, using cancer-specific stem cell biomarkers (Kantara et al., Lab Invest 95:100-112, 2015). When performing this technique, 0-1 circulating epithelial tumor cells/mL blood should be expected in patients free of malignant adenocarcinomas compared to over 3 circulating cancer stem cells/mL blood in patients positive for malignant adenocarcinomas (Kantara et al., Lab Invest 95:100-112, 2015).


Assuntos
Adenocarcinoma , Células Neoplásicas Circulantes , Humanos , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/patologia , Biomarcadores , Células-Tronco Neoplásicas/patologia , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Biomarcadores Tumorais
9.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473908

RESUMO

As the burden of type 2 diabetes (T2D) continues to escalate globally, there is a growing need for novel, less-invasive biomarkers capable of early diabetes detection and monitoring of disease progression. Liquid biopsy, recognized for its minimally invasive nature, is increasingly being applied beyond oncology, and nevertheless shows its potential when the collection of the tissue biopsy is not possible. This diagnostic approach involves utilizing liquid biopsy markers such as cell-free nucleic acids, extracellular vesicles, and diverse metabolites for the molecular diagnosis of T2D and its related complications. In this context, we thoroughly examine recent developments in T2D liquid biopsy research. Additionally, we discuss the primary challenges and future prospects of employing liquid biopsy in the management of T2D. Prognosis, diagnosis and monitoring of T2D through liquid biopsy could be a game-changing technique for personalized diabetes management.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Biomarcadores Tumorais/metabolismo , Biópsia Líquida/métodos , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos Livres/metabolismo , Células Neoplásicas Circulantes/patologia
10.
Anal Chem ; 96(11): 4377-4384, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442207

RESUMO

Low number of circulating tumor cells (CTCs) in the blood samples and time-consuming properties of the current CTC isolation methods for processing a small volume of blood are the biggest obstacles to CTC usage in practice. Therefore, we aimed to design a CTC dialysis system with the ability to process cancer patients' whole blood within a reasonable time. Two strategies were employed for developing this dialysis setup, including (i) synthesizing novel in situ core-shell Cu ferrites consisting of the Cu-CuFe2O4 core and the MIL-88A shell, which are targeted by the anti-HER2 antibody for the efficient targeting and trapping of CTCs; and (ii) fabricating a microfluidic system containing a three-dimensional (3D)-printed microchannel filter composed of a polycaprolactone/Fe3O4 nanoparticle composite with pore diameter less than 200 µm on which a high-voltage magnetic field is focused to enrich and isolate the magnetic nanoparticle-targeted CTCs from a large volume of blood. The system was assessed in different aspects including capturing the efficacy of the magnetic nanoparticles, CTC enrichment and isolation from large volumes of human blood, side effects on blood cells, and the viability of CTCs after isolation for further analysis. Under the optimized conditions, the CTC dialysis system exhibited more than 80% efficacy in the isolation of CTCs from blood samples. The isolated CTCs were viable and were able to proliferate. Moreover, the CTC dialysis system was safe and did not cause side effects on normal blood cells. Taken together, the designed CTC dialysis system can process a high volume of blood for efficient dual diagnostic and therapeutic purposes.


Assuntos
Compostos Férricos , Nanoestruturas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Microfluídica , Medicina de Precisão , Separação Celular/métodos , Diálise Renal , Impressão Tridimensional , Fenômenos Magnéticos , Linhagem Celular Tumoral
11.
Methods Mol Biol ; 2793: 101-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526726

RESUMO

Recent advancements in the profiling of proteomes at the single-cell level necessitate the development of quantitative and versatile platforms, particularly for analyzing rare cells like circulating tumor cells (CTCs). In this chapter, we present an integrated microfluidic chip that utilizes magnetic nanoparticles to capture single tumor cells with exceptional efficiency. This chip enables on-chip incubation and facilitates in situ analysis of cell-surface protein expression. By combining phage-based barcoding with next-generation sequencing technology, we successfully monitored changes in the expression of multiple surface markers induced by CTC adherence. This innovative platform holds significant potential for comprehensive screening of multiple surface antigens simultaneously in rare cells, offering single-cell resolution. Consequently, it will contribute valuable insights into biological heterogeneity and human disease.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica , Separação Celular , Proteômica , Linhagem Celular Tumoral , Células Neoplásicas Circulantes/patologia
12.
World J Surg Oncol ; 22(1): 76, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454471

RESUMO

BACKGROUND: The gold standard treatment for renal cell carcinoma (RCC) with tumor thrombus (TT) is complete surgical excision. The surgery is complex and challenging to the surgeon, especially with large tumor thrombus extending into the inferior vena cava (IVC) and right atrium. Traditionally, these difficult cases required the use of cardiopulmonary bypass (CPB) with or without deep hypothermic cardiac arrest, but in recent years, different surgical techniques derived from the field of liver transplantation have been used in efforts to avoid CPB. CASE PRESENTATION: We present a case of RCC with TT level IIIc (extending above major hepatic veins) that "uncoiled" intraoperatively into the right atrium after division of the IVC ligament, transforming into a level IV TT. Despite the new TT extension, the surgery was successfully completed exclusively through an abdominal approach without CPB and while using intraoperative transesophageal echocardiography (TEE) monitoring and a cardiothoracic team standby. CONCLUSIONS: This case highlights the need for a multidisciplinary approach and the utility of intraoperative continous TEE monitoring which helped to visualize the change of the TT venous extension, allowing the surgical teamto modify their surgical approach as needed avoiding a catastrophic event.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Células Neoplásicas Circulantes , Trombose , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia , Neoplasias Renais/patologia , Nefrectomia/métodos , Trombose/diagnóstico por imagem , Trombose/etiologia , Trombose/cirurgia , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/cirurgia , Veia Cava Inferior/patologia , Trombectomia/métodos , Células Neoplásicas Circulantes/patologia
13.
Clin Exp Med ; 24(1): 49, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427120

RESUMO

In the dynamic process of metastasis, circulating tumor cells (CTCs) emanate from the primary solid tumor and subsequently acquire the capacity to disengage from the basement membrane, facilitating their infiltration into the vascular system via the interstitial tissue. Given the pivotal role of CTCs in the intricate hematogenous metastasis, they have emerged as an essential resource for a deeper comprehension of cancer metastasis while also serving as a cornerstone for the development of new indicators for early cancer screening and new therapeutic targets. In the epoch of precision medicine, as CTC enrichment and separation technologies continually advance and reach full fruition, the domain of CTC research has transcended the mere straightforward detection and quantification. The rapid advancement of CTC analysis platforms has presented a compelling opportunity for in-depth exploration of CTCs within the bloodstream. Here, we provide an overview of the current status and research significance of multi-omics studies on CTCs, including genomics, transcriptomics, proteomics, and metabolomics. These studies have contributed to uncovering the unique heterogeneity of CTCs and identifying potential metastatic targets as well as specific recognition sites. We also review the impact of various states of CTCs in the bloodstream on their metastatic potential, such as clustered CTCs, interactions with other blood components, and the phenotypic states of CTCs after undergoing epithelial-mesenchymal transition (EMT). Within this context, we also discuss the therapeutic implications and potential of CTCs.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Multiômica , Biomarcadores Tumorais , Transição Epitelial-Mesenquimal
14.
Sci Rep ; 14(1): 7350, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538742

RESUMO

Persistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens. Using oligonucleotide conjugated antibodies (Ab-oligo) permitting cyclic immunofluorescence (cyCIF), we present analyses of phenotypes among tumor and peripheral blood hybrid cells. Interestingly, the majority of circulating hybrid cell (CHC) subpopulations were not identified in tumor-associated hybrids. These results highlight the efficacy of ultra-high content phenotypic analyses using Ab-oligo based cyCIF applied to both tumor and peripheral blood specimens. The combination of a multiplex phenotypic profiling platform that is gentle enough to analyze blood to detect and evaluate disseminated tumor cells represents a novel approach to exploring novel tumor biology and potential utility for developing the population as a blood-based biomarker in cancer.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais , Células Híbridas/patologia , Anticorpos , Fenótipo
15.
Front Biosci (Landmark Ed) ; 29(2): 80, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38420812

RESUMO

The incidence and mortality from malignant tumors continue to rise each year. Consequently, early diagnosis and intervention are vital for improving patient' prognosis and survival. The traditional pathological tissue biopsy is currently considered the gold standard for cancer diagnosis. However, it suffers from several limitations including invasiveness, sometimes not repeatable or unsuitable, and the inability to capture the dynamic nature of tumors in terms of space and time. Consequently, these limit the application of tissue biopsies for the diagnosis of early-stage tumors and have redirected the research focus towards liquid biopsies. Blood-based liquid biopsies have thus emerged as a promising option for non-invasive assessment of tumor-specific biomarkers. These minimally invasive, easily accessible, and reproducible tests offer several advantages, such as being mostly complication-free and efficient at monitoring tumor progression and tracing drug resistance. Liquid biopsies show great potential for cancer prediction, diagnosis, and prognostic assessment. Circulating tumor-educated platelets (TEPs) possess the unique ability to absorb nucleic acids from the bloodstream and to modify transcripts derived from megakaryocytes in response to external signals. In addition, circulating free RNA (cfRNA) constitutes a significant portion of the biomolecules present in the bloodstream. This paper aims to provide a comprehensive overview of the current research status regarding TEP RNA and cfRNA in liquid biopsies from various tumor types. Our analysis includes cancers of the lung, liver, pancreas, breast, nasopharynx, ovary and colon, as well as multiple myeloma and sarcoma. By synthesizing this information, we intend to establish a solid theoretical foundation for exploring potential applications of circulating RNA as a reliable biomarker for tumor diagnosis and monitoring.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Células Neoplásicas Circulantes , Feminino , Humanos , Ácidos Nucleicos Livres/genética , Biópsia Líquida , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , RNA/genética , RNA Neoplásico , Biomarcadores Tumorais/genética , Células Neoplásicas Circulantes/patologia
16.
Mol Aspects Med ; 96: 101258, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38387225

RESUMO

Over the past decade, novel methods for enrichment and identification of cancer cells circulating in the blood have been established. Blood-based detection of cancer cells and other tumor-associated products can be summarized under the term of Liquid Biopsy. Circulating tumor cells (CTCs) have been used for diagnosis, risk stratification and treatment selection as well as treatment monitoring in several studies over the past years, thus representing a valuable biomarker for cancer patients. A plethora of methods to enrich, detect and analyze CTCs has been established. In contrast to other liquid biopsy analytes (e.g. ctDNA), CTCs represent a viable analyte that provides a unique opportunity to understand the underlaying biology of cancer and the metastatic cascade on the molecular level. In this review, we provide an overview on the current methods used for enrichment, detection, molecular and functional characterization of CTCs.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Biópsia Líquida , Biomarcadores Tumorais
17.
Cancer Sci ; 115(4): 1060-1072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308498

RESUMO

Liquid biopsy is emerging as a pivotal tool in precision oncology, offering a noninvasive and comprehensive approach to cancer diagnostics and management. By harnessing biofluids such as blood, urine, saliva, cerebrospinal fluid, and pleural effusions, this technique profiles key biomarkers including circulating tumor DNA, circulating tumor cells, microRNAs, and extracellular vesicles. This review discusses the extended scope of liquid biopsy, highlighting its indispensable role in enhancing patient outcomes through early detection, continuous monitoring, and tailored therapy. While the advantages are notable, we also address the challenges, emphasizing the necessity for precision, cost-effectiveness, and standardized methodologies in its broader application. The future trajectory of liquid biopsy is set to expand its reach in personalized medicine, fueled by technological advancements and collaborative research.


Assuntos
DNA Tumoral Circulante , Células Neoplásicas Circulantes , Humanos , Medicina de Precisão/métodos , Biomarcadores Tumorais/genética , Biópsia Líquida/métodos , DNA Tumoral Circulante/genética , Células Neoplásicas Circulantes/patologia
18.
Nat Protoc ; 19(4): 985-1014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316964

RESUMO

Identification and characterization of circulating tumor cells (CTCs) from blood samples of patients with cancer can help monitor parameters such as disease stage, disease progression and therapeutic efficiency. However, the sensitivity and specificity of current multivalent approaches used for CTC capture is limited by the lack of control over the ligands' position. In this Protocol Update, we describe DNA-tetrahedral frameworks anchored with aptamers that can be configured with user-defined spatial arrangements and stoichiometries. The modified tetrahedral DNA frameworks, termed 'n-simplexes', can be used as probes to specifically target receptor-ligand interactions on the cell membrane. Here, we describe the synthesis and use of n-simplexes that target the epithelial cell adhesion molecule expressed on the surface of CTCs. The characterization of the n-simplexes includes measuring the binding affinity to the membrane receptors as a result of the spatial arrangement and stoichiometry of the aptamers. We further detail the capture of CTCs from patient blood samples. The procedure for the preparation and characterization of n-simplexes requires 11.5 h, CTC capture from clinical samples and data processing requires ~5 h per six samples and the downstream analysis of captured cells typically requires 5.5 h. The protocol is suitable for users with basic expertise in molecular biology and handling of clinical samples.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Separação Celular/métodos , DNA , Linhagem Celular Tumoral
19.
Int J Cancer ; 154(12): 2189-2199, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38353516

RESUMO

Small-cell lung cancer (SCLC) is a fatal disease with limited treatment options. Circulating tumor cells (CTCs) in liquid biopsy samples may serve as predictive and prognostic biomarkers; but the analysis of CTCs is still challenging. By using microfluidic or density gradient CTC enrichment in combination with immunofluorescent (IF) staining or qPCR of CTC-related transcripts, we achieved a 60.8% to 88.0% positivity in SCLC blood samples. Epithelial and neuroendocrine transcripts including the druggable target DLL3 were associated with shorter overall survival (OS), indicating the clinical value of these markers in terms of differential diagnosis and treatment decisions. High CTC counts and the presence of CTC duplets detected by IF staining were prognostic for OS, and thus may serve as indicators of disease progression or therapy failure. In patient samples with high CTC load detected by IF staining, a concordance of the transcripts positivity in circulating free plasma RNA and CTCs was observed. Our data emphasize the role of CTCs and CTC-related transcripts and underline the clinical value of liquid biopsy analysis in SCLC.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Prognóstico , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/genética , Proteínas de Membrana , Peptídeos e Proteínas de Sinalização Intracelular
20.
Thorac Cancer ; 15(8): 654-660, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38297462

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) play a crucial role in the early diagnosis and prognosis of lung cancer. Identification of a more suitable sample source could be a breakthrough towards enhancing CTC detectability in early-stage lung cancer. We investigated the differences in detectable CTCs between peripheral arterial and venous blood in early- and mid-stage lung cancer patients undergoing surgery and analyzed the association between clinicopathological factors and detectable CTCs in peripheral arterial and venous blood. METHODS: Peripheral arterial and venous blood was collected in 5-mL samples from 56 patients with surgically resected and pathologically clear at early- or mid-stage lung cancer. Blood specimens were enriched for CTCs based on isolation by size of epithelial tumor cells. The CTCs were identified using Swiss Giemsa staining and immunohistochemistry for CD45/CD31. RESULTS: In stage I lung cancer, CTC-positive rate was significantly higher in peripheral arterial than in venous blood (45.45% vs. 17.39%). There was no significant difference in the number of detectable CTCs between peripheral arterial and venous blood. A low degree of differentiation was associated with a high positive rate of CTCs in peripheral venous blood. The number of circulating tumor microemboli was significantly higher in patients with tumor size >3 cm compared with ≤3 cm. CONCLUSION: CTC levels in peripheral arterial and venous blood differed little in lung cancer patients.Compared to peripheral venous blood, peripheral arterial blood had a higher CTC positivity rate in early-stage lung cancer.This study was favorable for early detection and monitoring of lung cancer.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Prognóstico , Biomarcadores Tumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...